

DESCRIPTION OF PROGRAMME OUTCOMES

NAME OF THE DEAPRTMENT: Biotechnology & Food Processing

NAME OF THE PROGRAMME: M.Sc. (Hons.) biotechnology

P.O. No.	Description of Programme Outcome	Domain as per Bloom's Taxonomy	Level of Bloom Taxonomy*
PO-1	Communicate effectively with the biotechnology community and with society at large such as, being able to comprehend and write effective reports, make effective presentations-documentation and give and receive clear instructions.	Cognitive	1
PO-2	Identify the impact of professional biotechnology solutions in societal and environmental contexts and demonstrate the knowledge and need for sustainable development.	Cognitive	1
PO-3	Recognize the need for and have the preparation and ability to engage in independent and life- long learning in the broadest context of technological change. Self-assess and use feedback effectively from others to identify learning needs and to satisfy these needs.	Affective	1,2,3
PO-4	Work effectively as an individual, member or the leader of diverse teams in multidisciplinary settings.	Affective	1,2,3
PO-5	Recognize the solutions for complex biological-based problems and design the process that address to the specific needs for the public health, safety and environmental considerations	Psychomotor	1,2,3,4,5,6
PO-6	Developthe processes and applications which will have profound impact on sectors such as agriculture, industry, healthcare and restoration of degraded environment to provide sustainable competitive edge to present society.	Psychomotor	1,2,3,4,5,6
PO-7	Possess knowledge and comprehension of the core and advanced knowledge associated with the	Cognitive	1,2

	profession of biotechnology, including molecular biology, pharmaceutical microbiology, cell		
	biology etc.		
PO-8	Identify, select and apply appropriate methods and procedures, resources and modern biotechnology-related computing tools with an understanding of the limitations	Affective	1,2,3
PO-9	Utilize the principles of scientific enquiry, thinking analytically, clearly and critically while solving problems and making decisions during daily practices.	Affective	1,2,3
PO-10	Demonstrate effective planning abilities including time management. Resource management, delegation skills and organizational skills.	Psychomotor	1,2,3
PO-11/PSO1	Explain knowledge in the field of biotechnology and applied sciences.	Cognitive	1,2
PO-12/PSO2	Design and conduct experiments in biotechnology as well as analyze and interpret data.	Psychomotor	1,2,3,4,5,6
PO-13/PSO3	Demonstrate current techniques, skills and modern tools necessary for modeling and design of bioprocesses	Cognitive , Psychomotor	1,2,3
PO-14/PSO4	Develop and implement plans and organize work to meet deadlines.	Cognitive	1,2,3,4,5,6
PO-15/PSO5	Recognize and attain an opportunity in Entrepreneurship sector.	Cognitive	1,2,3

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT: Biotechnology and Food Processing

NAME OF THE PROGRAMME: M. Sc Biotechnology

NAME OF COURSE :Introductory Microbiology (Paper- III)

NAME OF FACULTY :Love Singla

C.O. No.	Description of Course Outcome	Method/s of Assessment
CO-1	Demonstrate about parts of microscope, type and its principle, theory and practical skills in	Exams, Oral Exams, Quizzes, Home Assignments, Virtual
	microscopy and their handling techniques and different methods of staining techniques	Labs
CO-2	Summarize the basic microbial structure and function and study the comparative	Exams, Oral Exams, Quizzes, Home Assignments, Virtual
	characteristics of prokaryotes and eukaryotes.	Labs, Authentic Problem solving
CO-3	Evaluate various culture media and their applications and also understand various physical and	Exams, Oral Exams, Quizzes, Home Assignments
	chemical means of sterilization	
CO-4	Explain general bacteriology and microbial techniques for isolation of pure cultures of	Exams, Oral Exams, Quizzes, Home Assignment
	bacteria, fungi and algae, master aseptic techniques.	
CO-5	Comprehend the various methods for identification of unknown microorganisms, understand	Exams, Oral Exams, Quizzes, Home Assignments
	the microbial transport systems.	
CO-6	Evaluate various physical and chemical growth requirements of bacteria and get equipped	Exams, Oral Exams, Quizzes, Home Assignments
	with various methods of bacterial growth measurement.	

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEPARTMENT: Biotechnology and Food Processing

NAME OF THE PROGRAMME: M. Sc. Biotechnology

NAME OF COURSE :Practical pertaining to Paper- III

NAME OF FACULTY : Love Singla

C.O. No.	Description of Course Outcome	Method/s of Assessment
CO-1	Staining techniques in Microbiology-simple, negative and differential staining.	Lab work, Virtual Labs, Class Assignment, Home
		Assignments
CO-2	Isolation, purification, maintenance and preservation techniques of aerobic and anaerobic	Lab work, Virtual Labs, Class Assignment, Home
	cultures.	Assignments
CO-3	Morphological, cultural and biochemical characterization of microorganisms, isolation of	Lab work, Virtual Labs, Class Assignment, Home
	bacteria by pure culture techniques.	Assignments
CO-4	Measurement of size of microorganism by microscopic technique, checking motility of	Lab work, Virtual Labs, Class Assignment, Home
	microorganism by hanging drop method and viability determination of microorganisms by	Assignments
	microscopic technique.	
CO-5	Strain improvement by physical and chemical mutagenesis, presumptive and confirmation test	Lab work, Virtual Labs, Class Assignment, Home
	for the determination of coliform bacteria.	Assignments
CO-6	Microbial growth measurements by different techniques and determination of factors affecting	Lab work, Virtual Labs, Class Assignment, Home
	growth	Assignments
	of microorganisms	

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT: BIOTECHNOLOGY & FOOD PROCESSING

NAME OF THE PROGRAMME :M. Sc .Biotechnology.

NAME OF COURSE :Fundamentals of Fermentation Technology

NAME OF FACULTY : Parminder Kaur

C.O. No.	Description of Course Outcome	Methods of Assessment
CO-1	Explain Fermentation design and control; Fermentation products-primary metabolites, secondary metabolites and single cell proteins. Media microbial fermentations, Nutritional requirements, Chemically defined and complex media formulation.	Exams, Class tests, presentations and Seminars.
CO-2	DescribeFermentation types, Factors influencing liquid and solid state fermentations; Merits and demerits of different types of fermentations, Inoculums development Development of inoculum for bacterial, yeast and fungal fermentations at industrial level and Microbial growth kinetics.	Exams, Class tests, class assignment, Presentations and Seminars.

CO-3	Define General characteristics of fermentation modeling; Types of models; Criteria for selection of a suitable model, Immobilized biocatalysts, Immobilization of whole cells, Factors influencing the operational stability of immobilized biocatalyst.	Exams, Class tests, class assignment, presentations and Seminars.
CO-4	Demonstrate Biotransformations, Future of biotransformations, Production technology of different types of wines, beer and whisky.	Class discussion, Class tests, group assignment, presentations and Seminars.
CO-5	Discuss Baker's yeast; Single cell proteins-production, composition, economic parameters and constraints; Mass cultivation of <i>Spirulina</i> ; Safety aspects of SCP.	Class discussion, Class tests, class assignment, presentations and Seminars.
CO-6	Enlist Production and applications of bioinsecticides, biopesticides and biofertilizers. Fermentative production of liquid fuels-ethanol, acetone and butanol, etc.; Factors affecting production of biofuels.	Class discussion, Class tests, class assignment, presentations and Seminars.

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT: BIOTECHNOLOGY & FOOD PROCESSING

NAME OF THE PROGRAMME: M.Sc Biotechnology 2ND SEMESTER

NAME OF COURSE : Fundamentals of bioprocess development

NAME OF FACULTY :Parneet kaur

C.O. No.	Description of Course Outcome	Methods of Assessment
CO-1	Define chemical and Biochemical engineering, Enlist various applications of biochemical engineering in bioprocess development.	Exams, Class tests, class assignment, and Seminars.
CO-2	Describe basic concept in bioprocess development.	Exams, Class tests, class assignment, Presentations and Seminars.
CO-3	Identify different types of mode of operation used in bioprocess.	Exams, Class tests, class assignment, presentations and Seminars.
CO-4	Classify fluid flow, Heat transfer and Mass transfer process in bioprocess development.	Exams, Class tests, class assignment, group discussion.
CO-5	Enlist the various types of bioreactors used in bioprocess, Illustrate different types of monitoring and controlling devices used in bioprocess.	Group discussions, class assignments, Exams.

)-6	Explain sterilization of bioreactors and media, Define scale-up of bioprocess, downstream processing and Bioprocess economics.	Exams, group assignments .

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT: BIOTECHNOLOGY & FOOD PROCESSING

NAME OF THE PROGRAMME: M.Sc Biotechnology 2nd semester

NAME OF COURSE :Practical Pertaining to theory paper VII

NAME OF FACULTY :Parneet Kaur

C.O. No.	Description of Course Outcome	Methods of Assessment
CO-1	Demonstrate laboratory scale Bioreactor.	Viva , quiz .
CO-2	Perform isolation, extraction and purification of intracellular as well as extracellular bio-products using various biochemical techniques.	Lab work
CO-3	Analyze the thermal death time of <i>Bacillus staerothermophilus</i> .	Lab work
CO-4	Produce ethanol using free and immobilized cells.	Lab work
CO-5	Produce various types of wine using fermentative techniques.	Lab work
CO-6	Communicate Bioprocess development related concepts and experimental results through effective written and oral communication.	Viva, quiz, class assignments

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT: Biotechnology and Food Processing

NAME OF THE PROGRAMME: M. Sc. (HONS) Biotechnology

NAME OF COURSE :Computer and Biostatistics (Paper XV)

NAME OF FACULTY :Love Singla

C.O. No.	Description of Course Outcome	Method/s of Assessment
CO-1	Describe the better understanding of the descriptive statistics and measures of association.	Exams, Oral Exams, Quizzes, Home Assignments
CO-2	Justify the basic principles of statistical inference, modelling and testing.	Exams, Oral Exams, Quizzes, Home Assignments, Class Assignments
CO-3	Conclude knowledge to recognize the type of problem they are dealing with and choose appropriate methods for analysing simple biological data sets.	Exams, Oral Exams, Quizzes, Home Assignments, Virtual Labs, Authentic Problem solving
CO-4	Demonstrate to perform the analysis with statistical software.	Exams, Oral Exams, Quizzes, Home Assignments, Authentic Problem solving
CO-5	Devise a general idea of how these methods could be used in practice in the	Exams, Oral Exams, Quizzes, Home Assignments

	field of biotechnology, drug development and clinical diagnostics and in fundamental academic research.	
CO-6		Exams, Oral Exams, Quizzes, Home Assignments, Virtual Labs, Authentic Problem solving

DESCRIPTION OF COURSE OUTCOMES

NAME OF THE DEAPRTMENT : BIOTECHNOLOGY & FOOD PROCESSING

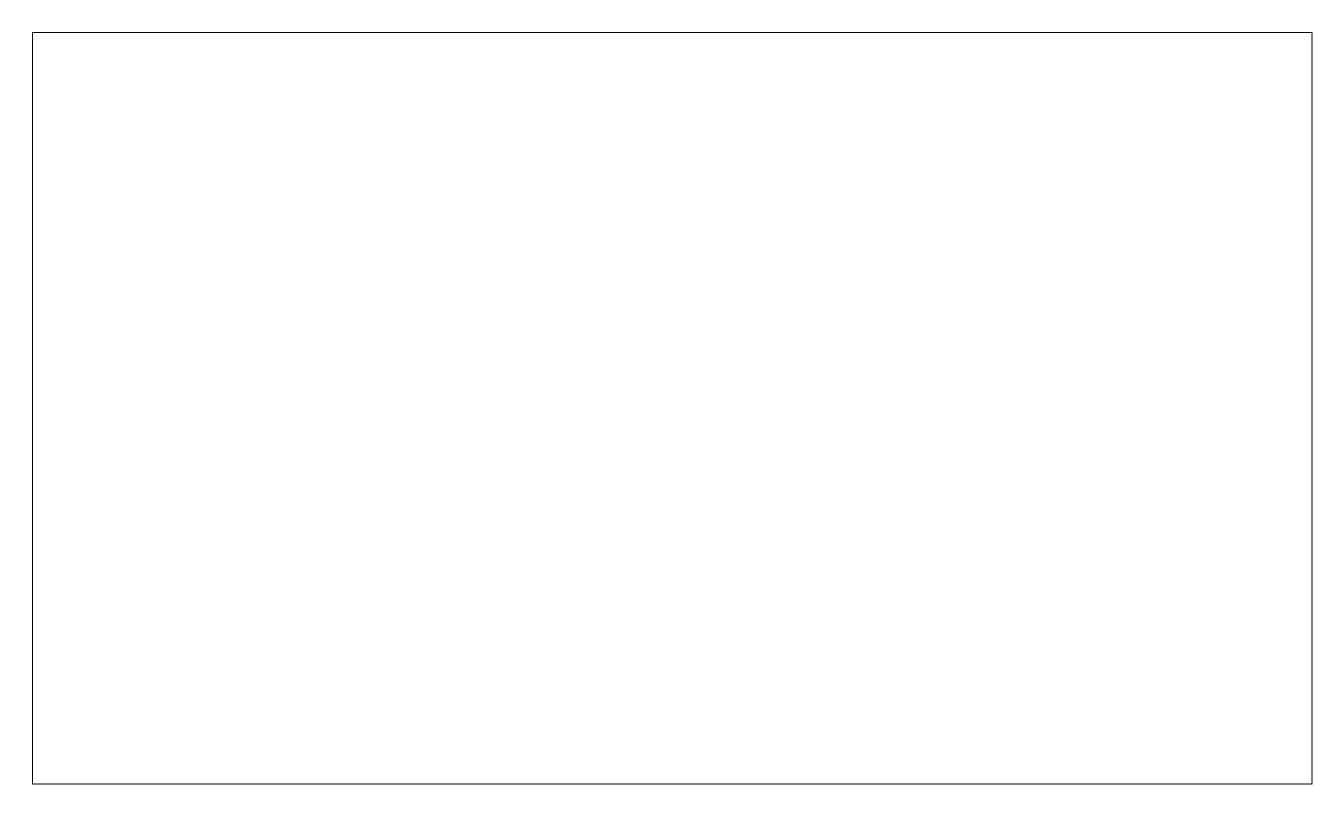
NAME OF THE PROGRAMME :M.Sc (Hons.)Biotechnology

NAME OF COURSE :Practical Pertaining to theory PAPER VII

NAME OF FACULTY :Mrs.Jaspreet Kaur

C.O. No.	Description of Course Outcome	Methods of Assessment
CO-1	Prepare medium and callus initiation	Lab work
CO-2	Perform callus subculturing from an established callus	Lab work
CO-3	Prepare growth curve of mammalian cell line in culture and determination of cell doubling time.	Lab work
CO-4	Analyse lymphocyte and monolayer culture technique ,viability test.	Lab work
CO-5	Demonstrate orientation to a tissue culture facility	Viva ,quiz
CO-6	Produce micropropagation of provided plant material.	Lab work

DESCRIPTION OF COURSE OUTCOMES


NAME OF THE DEAPRTMENT : BIOTECHNOLOGY & FOOD PROCESSING

NAME OF THE PROGRAMME :M.Sc Biotechnology 2nd year

NAME OF COURSE :Tissue culture technology

NAME OF FACULTY :Mrs.Jaspreet Kaur

C.O. No.	Description of Course Outcome	Methods of Assessment
CO-1	Describe history of plant cell culture and animal cell culture.	Exams, Class tests, class assignment, presentations and
		Seminars.
CO-2	Illustrate callus and cell culture, regeneration and maintenance.	Exams, Class tests, class assignment,
		Presentations and Seminars.
CO-3	Explain protoplast culture and fusion, somaclonal variation.	Exams, Class tests, class assignment, presentations and
		Seminars.
CO-4	Discuss animal cell culture, establishment, properties of animal cell line.	Exams, Class tests, class assignment
CO-5	Demonstrate culture techniques for laboratory and scale up of culture .	Viva, quiz, class assignments
CO-6	Enlist applications of somatic cell fusion ,animal,cell culture,stem cell culture ,animal cloning	Group discussions, Exams, Class tests.
	and embryo transfer	

AMAR SHAHEED BABA AJIT SINGH JUJHAR SINGH MEMORIAL COLLEGE, BELA RUPNAGAR PUNJAB MAPPING OF PROGRAM OUTCOME VERSUS COURSE OUTCOME INTERNAL QUALITY ASSURANCE CELL

NAME OF DEPARTMENT: Biotechnology & Food Processing

NAME OF PROGRAMME: M.Sc Biotechnology

NAME OF COURSES

CORRELATION LEVEL:1,2, and 3;1-SLIGHT (LOW); 2-MODERATE (MEDIUM) 3- HIGH

MENTION GAP ANALYSIS AT THE END

S.NO	Year	Semester	Name of Course/Code		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
			1	_	-	n	T	1	1	T	T	[[1	· · · · · ·
				CO1	1	1	1		1	1	3		2	2	3	1	1	2	
1			Dwinninlag of	CO1	1	1	1		1	1	3		2	2	3	1	1	2	
			Principles of Biochemistry-Paper-I	CO2	2	3	2		2	3	3	2	2	2	3	2	2	2	1
				CO4	1	1	2	2	2	3	3	3	3	2	3	3	3	2	1
				CO5	3	2	2				1			1	2	1			
				CO6	2			3						2				2	
		-		CO1	1	1	1		1	1	3		2	2	3	1	1	2	
2	2019-20	Ι		CO2	2	1	1		1	1	3		2	2	3	1	1	2	
2			Molecular Genetics	CO3	2	3	2		2	3	3	2	2	2	3	2	2	2	1
			(Paper II)	CO4	1	1	2	2	2	3	3	3	3	2	3	3	3	2	1
				CO5	3	2	2				1			1	2	1			
				CO6	2			3						2				2	
				CO1	1	3	1	3	1	1	1	1			3	3	1	1	1
3			Introductory Microbiology (Paper	CO2	3	2	1	1	2	2	1	2	2		3	1	1		1
			III)	CO3	1		2		1	1	3	2	1		2	3	3	2	2
				CO4	3	3	3	2	3	3	1	3	3	2	2	3	3	2	3

																		•	
				CO5	3	3	3	2	1	1	2	1	3	3	3	3	3	3	3
				CO6	2	1		1	1	1	2	2	2	2	2	3	3	1	1
				CO1	2		1	2		3	1	2	2		3	1	1		1
4				CO2	1	1	2	3		3	2	2	3	1	3	2	2		2
4			Immunology (Paper-IV)	CO3	2	2	1	3	1	3	1	3	3	1	2	3	2	1	2
			minunology (raper-iv)	CO4	1	1	2	3	1	3	1	3	3		3	2	2		2
				CO5	3		2	2		3	2	3	3	2	3	2	3		1
				CO6	3	1	2	2		3	1	2	2	1	3	2	3		1
				CO1	1	2	1					1	2	1	3	3	1	1	1
5				CO2	2	1	1	1		2	1	2	1	1	3	1	1		1
5			Practical pertaining to	CO3	1			1				1	2	1	2	3	3	2	2
			theory paper I and II	CO4	2	2	1	2		1		1	2	2	2	3	3	2	3
				CO5	2	1	2			1	2	2	3	2	3	3	3	3	3
				CO6	2	1	2			1		2	3	1	2	3	3	1	1
				CO1	1	2	1					1	2	1	3	3	1	1	1
6				CO2	2	1	1	1		2	1	2	1	1	3	1	1		1
0			Practical pertaining to	CO3	1			1				1	2	1	2	3	3	2	2
			theory paper III and IV	CO4	2	2	1	2		1		1	2	2	2	3	3	2	3
				CO5	2	1	2			1	2	2	3	2	3	3	3	3	3
				CO6	2	1	2			1		2	3	1	2	3	3	1	1
				CO1	1	1	1		1	1	3		2	2	3	1	1	2	
				CO2	2	1	1		1	1	3		2	2	3	1	1	2	
			Genetic Engineering	CO3	2	3	2		2	3	3	2	2	2	3	2	2	2	1
	2019-20	II	(PaperV)	CO4	1	1	2	2	2	3	3	3	3	2	3	3	3	2	1
	2017-20	11		CO5	3	2	2				1			1	2	1			
7				CO6	2			3						2				2	
			Molecular Biophysics	CO1	2	1	1		1	1	3		2	2	3	1	1	2	
8			(Paper-VI)	CO2	1	1	1		2	3	3	3	2	1	3	2	2	1	1

		CO3	1	2	2		2	3	3	2	2	2	3	3	3	2	2
		CO4	1	1	2	2	2	3	3	3	3	2	3	3	3	2	1
		CO5	3	2	2				1			1	2	1			
		CO6	2			3						2				2	
		CO1	3	2	3			1	2			1	3				
		CO2	2	2	2	1	2	2	1	2	2		2	2	2		1
	Fundamentals of Bioprocess Developmen	CO3	2		1		2	1			2		3		2		
	(Paper VII)	^S CO4	3	3	3	2	3	2			3	3	2	2	3	1	1
		CO5	1		1		2		2			2	3		1		
9		CO6	3		2	2	3	3			3	2	2		2	1	2
		CO1	3	2	3			1	2			1	3				
		CO2	2	2	2	1	2	2	1	2	2		2	2	2		1
	Fundamentals of	CO3	2		1		2	1			2		3		2		
	Fermentation Technolog (Paper VIII)	y CO4	3	3	3	2	3	2			3	3	2	2	3	1	1
		CO5	1		1		2		2			2	3		1		
10		CO6	3		2	2	3	3			3	2	2		2	1	2
		CO1	2	1	1				2	3	2	1	2	3	3	1	3
		CO2	1				1	2	2	3	2	1	2	3	3	1	3
	Practical pertaining to	CO3	1			2		1	2	3	3	2	2	3	3	2	3
	theory paper V and VI	CO4	2	1	1				2	3	2	1	2	3	3	1	3
		CO5	1			2		1	2	3	3	2	2	3	3	2	3
11		CO6	3	2	2				1			1	2	1			3
		CO1	2	1	1				2	3	2	1	2	3	3	1	3
		CO2	1				1	2	2	3	2	1	2	3	3	1	3
	Practical pertaining to	CO3	1			2		1	2	3	3	2	2	3	3	2	3
	theory paper VIIand VI	I CO4	2	1	1				2	3	2	1	2	3	3	1	3
		CO5	1			2		1	2	3	3	2	2	3	3	2	3
12		CO6	3	2	2				1			1	2	1			3

				CO1	2	1	1		1	1	3		2	2	3	1	1	2	
				CO2	1	1	1		1	1	3		2	2	3	1	1	2	
			Enzymology (Paper-IX)	CO3	2	3	2		2	3	3	2	2	2	3	2	2	2	1
			Enzymology (Paper-IA)	CO4	1	1	2	2	2	3	3	3	3	2	3	3	3	2	1
				CO5	3	2	2				1			1	2	1			
13				CO6	2			3						2				2	
				CO1	2	1	1		1	1	3		2	2	3	1	1	2	
				CO2	1	1	1		1	1	3		2	2	3	1	1	2	
			Microbial & Food Technology (Paper-	CO3	2	3	2		2	3	3	2	2	2	3	2	2	2	1
			X)	CO4	1	1	2	2	2	3	3	3	3	2	3	3	3	2	1
				CO5	3	2	2				1			1	2	1			
14				CO6	2			3						2				2	
				CO1	1		1	2		3	1	2	2		3	1	1		1
	2019-20	III	E	CO2	1	1	2	3		3	2	2	3	1	3	2	2		2
	2017-20	111	Environmental Bipotechnology (Paper	CO3	2	2	1	3	1	3	1	3	3	1	2	3	2	1	2
			XI)	CO4	1	1	2	3		3	1	3	3		3	2	2		2
			,	CO5	3		2	2		3	2	3	3	2	3	2	3		2
15				CO6	3	1	2	2		3	1	2	2	1	3	2	3		2
				CO1	3	3	2		3	3	3		1	1	3	3	1		3
			Commercial	CO2	3	3	2		3	3	3		2	1	3	3	1		3
			Biotechnology (Paper	CO3	3	3	3	3	3	3	3	1	2	2	3	3	1	1	3
			XII)	CO4	3	3	3	3	3	3	3	1	2	2	3	3	1	3	3
				CO5	3	3	3	3	3	3	3	3	2	1	3	3	1	3	3
16				CO6	3	3	3	3	3	3	3	1	2	1	3	3	1	3	3
				CO1	2	1	1				2	3	2	1	2	3	3	1	3
			Practical pertaining to	CO2	1				1	2	2	3	2	1	2	3	3	1	3
			theory paper IX and X	CO3	1			2		1	2	3	3	2	2	3	3	2	3
17				CO4	2	1	1				2	3	2	1	2	3	3	1	3

			CO5	1			2		1	2	3	3	2	2	3	3	2	3
			CO6	3	2	2				1			1	2	1			3
			CO1	2	1	1				2	3	2	1	2	3	3	1	3
			CO2	1				1	2	2	3	2	1	2	3	3	1	3
		Practical pertaining to	CO3	1			2		1	2	3	3	2	2	3	3	2	3
		theory paper XI and XII	CO4	2	1	1				2	3	2	1	2	3	3	1	3
			CO5	1			2		1	2	3	3	2	2	3	3	2	3
18			CO6	3	2	2				1			1	2	1			3
			CO1	3	2									3				1
			CO2	2	2	3	3	2		3	3	1		2	3	3	2	2
		Tissue & Cell culture	CO3	1	1			3	3	1	3	2	2	1	3	3	2	1
		Technology (Paper XIII)	CO4				2	3		2	3	2			2	1	2	1
			CO5				1	2										1
19			CO6				1	2										2
			CO1	1	3	3	1	2	1	3		2	3	3	2		3	3
			CO2	3	3	3	3	3	3	1		3	3	1	3		3	3
		Research Methodology	CO3	3	3	3	1	3	3	3		3	3	1	3		3	3
	2019-20 IV	(Paper-XIV)	CO4	3	3	3	2	3	3	3		3	3	1	3		3	3
			CO5	3	3	3	2	3	1	2		1	3	2	3		1	3
20			CO6	3	3	3	1	3	2	2		2	3	2	3		2	3
			CO1	3	2	1	3	2			1	2		1	3	1		3
			CO2	3	1	1	1	1			1	3	1	2	3	3	1	
		Computers &	CO3	3	1		3			1	1	1		1	1	2		3
		Biostatistics (Paper XV)	CO4	3			1			2	1	1		1	1	2		3
			CO5	3	2	3	3	2	2		2	3		1	1	2		3
21			CO6	3	2	3	3	3	3	3	3	3		1	1	2		3
		Fundamentals of	CO1	1	1	1		1	1	3		2	2	3	1	1	2	
22		Bioinformatics (Paper	CO2	2	1	1		1	1	3		2	2	3	1	1	2	

	XVI)	CO3	1	1	1		1	1	3		2	2	3	1	1	2	
		CO4	1	1	2	2	2	3	3	3	3	2	3	3	3	2	1
		CO5	3	2	2				1			1	2	1			
		CO6	3	1	2	2		3	1	2	2	1	3	2	3		
		CO1	2	1	1				2	3	2	1	2	3	3	1	
		CO2	1				1	2	2	3	2	1	2	3	3	1	
	Practical pertaining to theory paper XIII and	CO3	1			2		1	2	3	3	2	2	3	3	2	
	XIV	CO4	2	1	1				2	3	2	1	2	3	3	1	
		CO5	1			2		1	2	3	3	2	2	3	3	2	
23		CO6	3	2	2				1			1	2	1			
		CO1	1	1									1	1			
		CO2		2	1			1		2	2			1			
	Practical pertaining to	CO3				2					1		2	3	1	1	
	theory paperXV and XVI	CO4			1	2		1			3			1		1	
		CO5		1	1	1		1			2			2		1	
24		CO6															

ATTAINMENT OF PO BY DIRECT METHOD

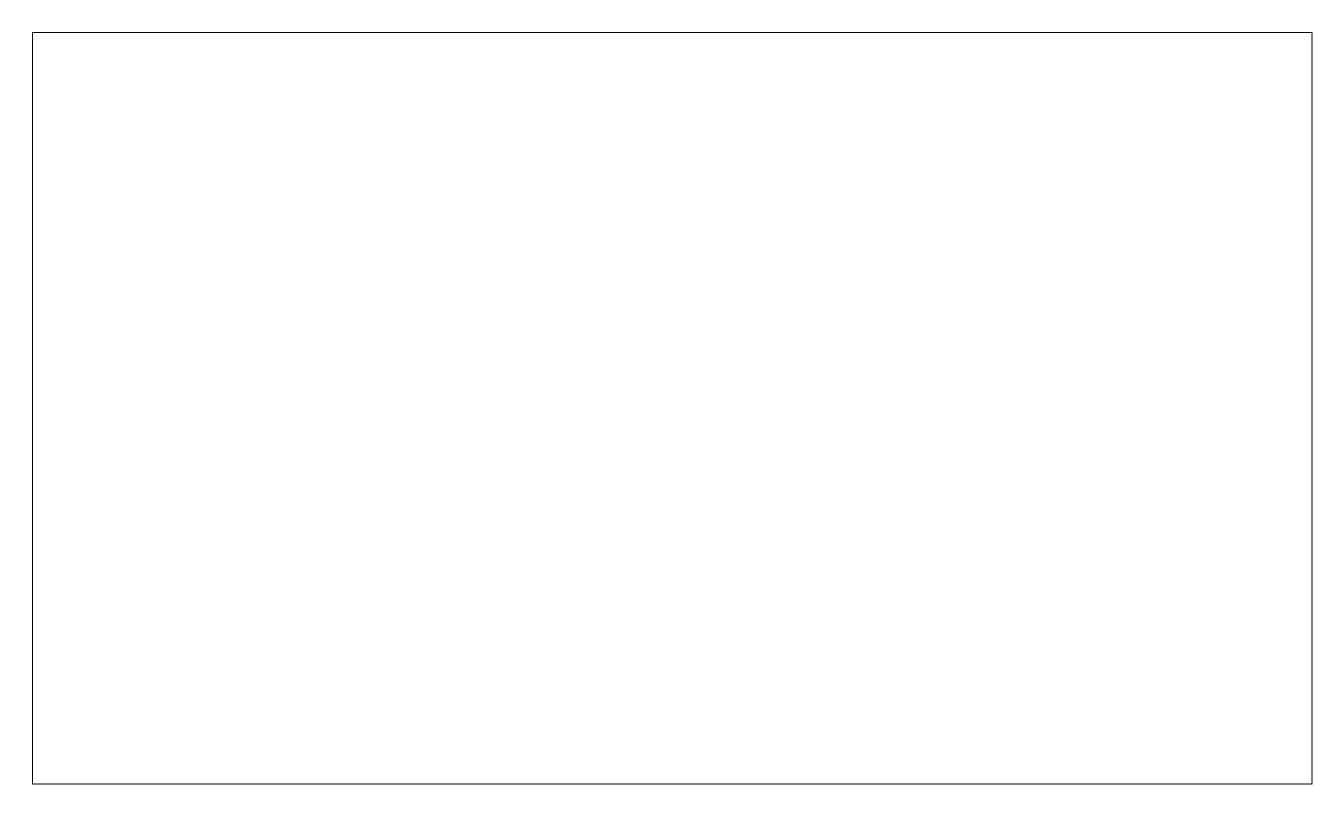
				COURSE	ATT	AINI	MENT CA	LCULA	TION	FOR	ALL	COU	RSES IN	I THE	E SEM	IESTER				
									AR S INJA		ED B	ABA	AJIT SI	NGH	JUJH	AR SIN	GH MEN	MORIAL	COLLE	EGE, ROPAR
															I	NTERN	AL QUA	ALITY A	SSURA	NCE CELL
	GRAMME: M	1.Sc																	-	
Biote	echnology	1	SEMESTER-	-11	1					DAT	E OF	DEC	CLARAT	ION (JF RE	SULTE	BY UNIV	1	-	
S. NO	NAME OF STUDENT	CLASS R.NO.	UNIVERSI TY R. NO.	REGISTRA TION NO.]	Pape	TCT r-XIII	Resear Paj	rch m perXI			np & papei	Biostat rXV	Func Bioi ma Pap V	nfor tics erX	Practi cal V	Practi cal VI	TOT AL OF ALL COU RSES	% age/C GPA	ATTAINME NT LEVEL
					T h	In	T(Th+I n)	Th	I n	Т	Th	In	Т	Th	In	Т	Т			
1	Bhawna	4001	1521	818-15-106	4 3	2 3	66	54	4 2 3	77	41	23	64	44	23	80	83	437	72.8	Level3
2	Kiranjit Kaur	4002	1530	814-14-282	4 6	2 3	69	44		69	40	25	65	38	23	87	84	435	72.5	Level3
3	Gurvinder Kaur	4003	1526	814-14-762	4 5	2 4	69	5	1 2 1 5	76	37	25	62	42	24	88	82	443	73.8	Level3
4	Shivi Jain	4004	1531	811-14-118	4 3	2 3	66	42	$2 \begin{vmatrix} 2 \\ 4 \end{vmatrix}$	66	41	24	65	42	23	83	83	428	71.3	Level3
5	Kirandeep Kaur	4005	1525	814-14-284	3 9	2 4	63	4	1 2 1 3	64	41	23	64	45	24	82	67	409	68.2	Level3
6	Sumandeep Kaur	4006	1522	814-14-27	3 6	2 3	59	42		65	45	23	68	29	23	84	83	411	68.5	Level3
7	Ruchi Semwal	4007	1529	811-14-116	3 7	2 4	61	5'	7 2 7 4	81	51	23	74	31	24	86	87	444	74	Level3
8	Rupinder	4008	1527	814-14-285	3	2	56	4	1 2	64	42	22	64	38	22	80	83	407	67.8	Level3

	Kaur				3	3			3											
	Maninder				4	2			2											
9	Kaur	4009	1523	814-14-291	5	4	69	51	4	75	44	24	68	39	24	85	81	441	73.5	Level3
	Parminder				4	2			2											
10	Kaur	4010	1524	814-14-290	0	3	63	46	4	70	49	24	73	27	23	86	81	423	70.5	Level3
	Ramanpreet				2	2			2											
11	Kaur	4011	1528	814-14-271	6	0	46	41	1	62	35	21	56	27	21	75	65	352	58.7	level2
	Dilpreet				2	2			2											
12	Singh	4051	1532	814-	7	2	49	44	2	66	40	22	62	45	22	79	65	388	64.7	level3
				Total of																
				subjects			736			835			785			995	944			
										69.5			65.41			82.91	78.67		69.68	
				%			61.33%			8%			%			%	%		%	

Average PO attainment by indirect method= 69.68 %

ATTAINMENT OF PO BY INDIRECT METHOD (EXIT SURVEY)

POs		DEGRI	EE OF REL	EVANCE		*% of PO	Level of attainme nt
	No. of 1	No. of 2	No. of 3	No. of 4	No. of 5		
1				13		80	level 3
2			1	11	1	80	level 3
3			1	11	1	80	level 3
4		2	3	6	2	72.3 1	level 3
5		3		7	3	75.3 8	level 3
6			3	8	2	78.4 6	level 3
7			1	9	3	83	level 3
8			1	10	2	81.5 4	level 3
9			1	8	4	84.6 2	level 3
10			1	7	5	86.1 5	level 3


Average PO attainment by indirect method= **80.14** %

Total PO attainment (%) = (weightage: 80 %) X (Average attainment in direct method) + (weightage: 20 %) X (Average attainment in indirect method)

= (80%) X 69.68 + (20%) X 80.14

= 71.76%

Level of Attainment = Level 3

